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Abstract:  Posing good problems is important for learning, teaching and research 
in mathematics.  In this paper, the converse problem posing strategy is applied to 
Gauss’s method that has been used to obtain the summation formula of an 
Arithmetic Progression.  The work here serves as a simple but typical example to 
demonstrate the use of this strategy.  The results obtained may also help the reader 
see to what extent Gauss’s method can be applied, thus enriching one’s 
understanding of this famous method.  

 
Introduction 

Possibly the most well known story about the great German mathematician Carl 
Friedrich Gauss is that he astonished his teacher by instantly obtaining the sum of 
all numbers from 1 to 100 soon after the teacher gave the problem (see, for 
example, Borowski and Borwein, 1999).  Gauss’s method actually applies to an 
arbitrary Arithmetic Progression and was used to obtain the general formula of such 
sums. 
 
Few people would doubt that being able to pose good problems is important for 
learning, teaching and research in mathematics.  However, finding a quality 
problem is not easy.  Besides a thorough understanding of the content materials, it 
also needs proper training and practice.  A number of different problem posing 
methods have been investigated and suggested by several authors (see, for example, 
Brown and Walter (1990), Mason, Burton, and Stacey (1998)).  One of the 
popularly used strategies is to formulate the converse of a valid proposition, and ask 
whether the converse statement is true.  Roughly speaking, if a proposition is in the 
form  ‘If p then q’, then the converse statement could be stated as: ‘If q then p’. 
 
However, very often a given proposition may not be formulated in the above 
standard form.  In such a case, we have to modify it before we can pose its converse 
problem.  In this paper, we shall apply the converse problem posing strategy to 
Gauss’s method.  We hope the work here will serve as a simple but typical example 
to demonstrate the use of this strategy.  The results obtained here may also help the 
reader see to what extent Gauss’s method can be applied, and thus deepen one’s 
understanding of this famous method.  
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It was reported that Gauss obtained the summation of all numbers from 1 to 100 by 
adding 1 and 100 to get 101, 2 to 99 to obtain a second 101, and continuing this 
kind of addition until adding 55 to 51 to get the fiftieth 101.  Since there are 
altogether fifty 101s, the summation is 50 × 101 = 5050.  We can view the method 
in a slightly different way as follows.  We reverse the sequence 1, 2, …, 100 to 
obtain another sequence 100, 99, …, 2, 1.  Then we add up the corresponding terms 
of these two sequences to get a constant sequence 101, 101, …, 101, the summation 
of which is 100 × 101.  Thus the summation of the original sequence is half of 100 
× 101.  From this second view of the method, we can obtain the summation of the 
first n terms of the sequence 1, 2, 3, …, k, …, for any n, and it is easy to see that the 
summation is )1(2 +nn . 
 
In general, if a sequence  satisfies the condition  ∞

=1}{ iia
 

a1 + an = ai + an−i+1,  1 ≤ i ≤ n,   for every positive integer n, 
 
then, as will be shown at the beginning of the next section, we can use Gauss’s 
method to obtain the sum of its first n terms. 
 
Every Arithmetic Progression satisfies the condition above.  A natural question 
follows: Can Gauss’ method be applied to non-Arithmetic Progressions?  Or more 
specifically, if a sequence  satisfies the above condition, must it be an 
Arithmetic Progression?  In the first section of the paper we shall answer this 
question.  In the next section we extend the scope to investigate the continuous 
counterpart of Gauss’s method.  In this case we consider the area of the region 
between x = 0, x = a, y = 0 and y = f(x), where f is a function defined on the real line 
satisfying some designated conditions.   

∞
=1}{ iia

 
The final section some guidelines are provided to teachers on how the results in 
sections 1 and 2 can be explored and discovered in the classroom.1

 
 
The Discrete Case 
Recall that a sequence of real numbers  is an Arithmetic Progression (AP) if 
there is a number d such that  a

∞
=1}{ iia

i+1 = a1 + id  holds for each i = 1, 2, …. 
 
                                                 
1 In these sections, theorems and corollaries are considered together and numbered consecutively, thus 
Theorem 1, Corollary 2, Theorem 3, and so on.  Problems are numbered separately, while examples and 
exercises are not numbered at all.   Note: The box symbol  is used to indicate the end of a proof. 
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Example:  The following two sequences are APs: 
 
 (i) 1, 2, 3, 4, …, n, … 
 
(ii) 5, 7, 9, 11, …, 2k+1, …, k ≥ 2. 
 
It is a simple exercise to prove by induction that if  is an AP, then the 
following condition, which we shall label as (1), holds: 

∞
=1}{ iia

 
for every positive integer n,  a1 + an = ai + an−i+1 holds for all i,   1 ≤ i ≤ n  (1) 

 
From here, it follows that 

)()()( 12
1

12
1

11
2
1

1
n

n
n

i
ini

n

i
i

n

i
i

n

i
i aaaaaaa +=+=+= ∑∑∑∑

=
+−

===

. 

 
In particular, if the sequence is an AP with common difference d, we may proceed 
as follows: 
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Of course, we may use the same formula )( 12
1

n
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 for finding the sum to n 

terms of any sequence  satisfying condition (1).  (We remark here that a key 
feature of (1) is that it holds for ALL positive integers n.  Thus, the formula will 
apply irrespective of where we ‘truncate’ the sequence.)  This leads to the first 
problem: 

∞
=1}{ iia

 
Problem 1:  Suppose  is a sequence satisfying (1).  Must  be an AP? ∞

=1}{ iia ∞
=1}{ iia

 
In fact, in order to see whether Gauss’ method can be applied to a larger class of 
sequences, we shall consider the condition (2) below which is more general than 
(1).  The condition (1) requires that a1 + an = ai + an−i+1 holds for every n and i < n, 
while condition (2) requires that a1 + an = ai + an−i+1 holds for every multiple n of a 
designated integer m and each i ≤ n.  Obviously, (2) is weaker than (1).  In the 
following theorem, we prove that (2) is equivalent to the combination of two 
conditions, which implies that the sequence  can be regrouped into a 
sequence of blocks of equal number of terms, so that the first block satisfies (1) and 
for each i, the subsequence obtained by taking the ith term from each block is an 
AP. 

∞
=1}{ iia
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Theorem 1:  Let  be a sequence of real numbers.  Fix a positive integer m.  
Consider the following condition: 

∞
=1}{ iia

 
for every multiple n of m,  ai + an−i+1 = a1 + an  holds for all i, 1 ≤ i ≤ n. (2) 

 
Then (2) is satisfied by  if and only if the following two conditions are 
satisfied: 

∞
=1}{ iia

(i) the subsequence  for each i, 1 ≤ i ≤ m, is an AP with common 
difference a

∞
=+ 1}{ rrmia

m+1 − a1, and 
(ii) ai + am−i+1 = a1 + am for all i, 1 ≤ i ≤ m. 

 
Proof [Sufficiency]  Suppose the conditions (i) and (ii) are satisfied.  We need to 
show that (2) holds.  For a given i, the proof consists of ‘shifting’ the terms ai and 
an−i+1 to the first block by making use of conditions (i) and (ii).  Let  n = km  and  d 
= am+1 − a1.  Then, we have for each i, 1 ≤ i ≤ n, 
 1+−+ ini aa =  1+−+ ikmi aa

    = , where  i’ = i − rm  and  1 ≤ i’ ≤ m 1'' +−−+ + irmkmirm aa
    =  )1'()1(' +−+−−+ + immrkirm aa

(We may assume i ≤ n − i + 1 and thus, k > r.) 
    = 1'' )1( +−+−−++ imi adrkrda , by (i) 
    = dkaa m )1(1 −++ , by (ii) 
    = , by (i). naa +1

 
[Necessity]  Now we prove that (2) implies conditions (i) and (ii).  As 

before, we view the sequence as consisting of blocks of m terms.  By truncating the 
sequence to an odd number of blocks, we obtain a result for the ‘centre’ block and 
in particular, show that (ii) must hold.  We establish another result by truncating the 
sequence to an even number of blocks and finally use Mathematical Induction to 
show that (i) holds as well.   

 
Let n = (2k−1)m.  Then by (2), for each positive integer k, a(k−1)m+i + akm−i+1 

= a(k−1)m+1 + akm holds for all i, 1 ≤ i ≤ m.  In particular, (ii) holds. 
 

Now, let am+1 − a1 = d.  We first consider n = 2m.  For each i, 1 ≤ i ≤ m, we 
have 

 a1 + a2m = ai + a2m−i+1, 
   a2m − a2m−i+1 = ai − a1, 
   a2m − (a2m + am+1 − am+i) = ai − a1, 
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   am+i − ai = am+1 − a1, 
   am+i − ai = d. 
 

Let P(k) be the statement akm+i − a(k−1)m+i = d  for each i, 1 ≤ i ≤ m, where k 
is a positive integer.  The statement is true for k = 1.  Assume the statement is true 
for all positive integers not exceeding k.  We have for each i, 1 ≤ i ≤ m, 
   a(k+1)m+i + akm−i+1 = akm+i + a(k+1)m−i+1,   

(here we take n = (2k−1)m)   
   a(k+1)m+i − akm+i = a(k+1)m−i+1 − akm−i+1, 
   a(k+1)m+i − akm+i = akm+(m+1−i) − a(k−1)m+(m+1−i), 
   a(k+1)m+i − akm+i = d (by induction hypothesis). 
 

By Mathematical Induction, P(k) is true for all positive integers k.  The 
property (i) follows.        
 

Observe that (2) is a more general condition than (1). 
 
Example:  The following sequences satisfy (2) but not (1): 
 
(1)  2, 8, 5, 11, 8, 14, 11, 17, 14, 20, 17, 23, … 

where . 
⎩
⎨
⎧

=−+
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=
nrifn

nrifn
ar 2)1(38

12)1(32

 Note that here m = 2 and  d = 3. 
 
(2)  5, 1, 6, 2, 3, -1, 4, 0, 1, -3, 2, -2, -1, -5, 0, -4, … 
 Here m = 4 and  d = -2. 
 
Exercise:  Find the sum to 50 terms of each of the sequences above. 
  
Now suppose the sequence  satisfies condition (1) for every n.  Take m = 1.  
Then, by condition (i) of Theorem 1, we obtain that  a

∞
=1}{ iia

i+1 = ai + d  holds for every i.  
So we have the following corollary. 
 
Corollary 2:  Let  be a sequence of real numbers.  Then  satisfies 
condition (1) only if it is an Arithmetic Progression. 

∞
=1}{ iia ∞
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The results above essentially tell us that a sequence whose sum to n terms can be 
found using Gauss’s method is either an AP or the combination of some APs.   
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The Continuous Case 
We now move to the continuous case. 
 

Consider the following right-angled triangle: 
 
 
 
 
 
 
 
 
 
 
 
 
The area of the triangle above equals the area of the following rectangle which is 
obtained by cutting the triangle at the middle and pasting the two parts as shown: 
 
 
 
 
 
 
 
 
 
 
 
 
 
This approach is similar to Gauss’s method in obtaining the sum of a sequence.  In 
fact, if we assume the equation of the diagonal is  f(x) = mx + d,  then for every  n ≥ 
0  and  0 ≤ x ≤ n,  f(x) + f(n−x) = f(0) + f(n).  Once again this idea applies to more 
general cases. 
 
By a simple computation, we can prove the following result: 
 
Theorem 3:  If f : ℜ→],0[ n  is a function such that f(x) + f(n−x) = k holds for 

every  x ∈ [0, n], where k is a fixed number, then 2
0

)( nk
n

dxxf =∫ . 
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Example:  
 
(i) Since 1cossin)(sinsin 22

2
22 =+=−+ xxxx π , we have 

 .
22
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0
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==∫ dxx  

 
(ii) Let .  Since f(x) + f(n−x) = f(0) + f(n) = c + mn +c = mn + 2c, 

we have 
cmxxf +=)(

 .
2

)2()(
0

cmnndxxf
n +

=∫  

Note that when f(x) = sin2(x), then f(x) + f(n−x) = k only for n = 
2
πm , where m is an 

odd integer.  Thus, of the two functions in the example above, only one of them, 
i.e., the linear function, satisfies f(x) + f(n−x) = k for all values of n.  We are thus led 
to pose the second problem. 
 
Problem 2:  Suppose f :  is a function satisfying the following condition: ℜ→ℜ+

0

 
for every real number n ≥ 0,  f(x) + f(n−x) = f(0) + f(n) holds for all x, 0 ≤ x ≤ n.  (3) 
 
Must  f  be a linear function? 
 
Let  be the set of real numbers.  Then ℜ ℜ  is a vector space over the field Q of 
rational numbers, where the addition is the ordinary addition of numbers and the 
scalar multiplication is the ordinary multiplication of numbers.  Then there exists a 
basis B for this vector space and we can assume that all elements in B are positive 
numbers.  Thus every real number can be expressed as a linear combination of a 
finite number of elements of B (see, for example, Megginson (1998)). 

 
In Theorem 4, we show that unlike in the discrete case where only the AP satisfies 
(1),  there are infinitely many functions that satisfy (3). 
  
Theorem 4:  Let f :  be a function and B = {vℜ→ℜ+

0 i > 0 | i ∈ I} be a basis for 
the vector space ℜ  of all real numbers over the field Q of all rational numbers.  
Then the following two conditions are equivalent for f: 
(1) f(x) + f(n−x) = f(0) + f(n)  holds for every  n ≥ 0  and  0 ≤ x ≤ n; 

(2) for each  x =  (a∑
∈ xIi

iiva i ∈ Q), where Ix is a finite subset of I, 
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f(x) = ∑ −+
∈ xIi

ii fvfaf ))0()(()0( . 

 
Proof (1) ⇒  (2):  To make the approach easier, we first assume that f(0) = 0.  
Then it is easy to see that for all  x, y ≥ 0,  f(x+y) = f(x) + f(y).  We shall now obtain 
a result involving mainly rational numbers.  This will serve as a stepping-stone for 
the more general real numbers.  Let n and k be any two positive integers and x be 
any nonnegative number.  We have 
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)()()( 211 xfxfxf nnn =+ . 
 
Adding up the equations we have )()( 1 xfxkf n

k
n = . If k = n,  then )()( 11 xfxf nn = .  

Thus, )()( xfxf n
k

n
k =  and so we have that for any positive rational number r and 

any positive real number x, f(rx) = rf(x).  The last equation obviously holds for  r = 
0  and  x ≥ 0  because  f(0) = 0. 
 
Recall that each vi is positive.  Thus, in particular,  we have  f(rivi) = rif(vi)  for all    

≥ 1.  Now consider any real number  x =  (a∑
∈ xIi

iiva i ∈ Q), where Ix is a finite subset 

of I.  We may assume that  Ix = {1, 2, …, m}.  We may further assume that               

x = ,  where  a∑
=

m

i
iiva

1
i ≥ 0  if and only if  1 ≤ i ≤ l  for some  l ≤ m.  Thus, we have 

the following: 

x = , ∑+∑
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m
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(We split the summation into two parts to separate terms according to the parity of 
ai.  This is in consideration of the fact that the domain of f is the set of non-negative 
real numbers.) 
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Now if f(0) ≠ 0, the result can be obtained by translation of the function by f(0) as 
follows.  Let g(x) = f(x) − f(0).  Thus, f(x) + f(n−x) = f(n) + f(0) implies g(x) + g(n−x) 

= g(n) + g(0).  Since g(0) = 0, we have by the earlier argument, g(x) = .  

Then we have:  
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(2)  (1):  Let n and x be any two positive numbers with x ≤ n.  We may 

assume that  x =  and   n = , where a
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         = f(0) + f(n).      
 
Obviously, every function of the form g(x) = mx + c (its graph is a straight line) 
satisfies (3).  The following is an example of a function satisfying (3) whose graph 
is not a straight line. 
 
Example:  Let B = {vi | i ∈ I} be a basis for the vector space ℜ  of real numbers 
over the field Q of rational numbers with vi > 0,  v1 = 1  and  v2 = 2 .  Define f : 

 as follows: ℜ→ℜ+
0

f(x) =  and ∑
=
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2 = 0}.  For each  c ∈ A,  let  Ac = { 2rc + ∈ | r∈Q−{0}}.  

We observe that   and  

+ℜ

U
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cAA
∈

+ ∪=ℜ0 φ=∩ 'cc AA  for  c ≠ c’.  The graph of 

the restriction of f(x) over A is the dotted line L = {(x, x) | x ∈ A}.  The graph of the 
restriction of f(x) over Ac is the dotted line  lc = {(x, 2x−c) | x ∈ Ac}. The figure 
below shows a sketch graph of y = f(x).  The line L and two of the lines lc, i.e., l0 and 
lπ, are shown.  The graph of  y = f(x)  is the shaded region which can be visualized 
as the union of the line L and lines lc. 
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Some guidelines for use in classroom 
The teacher, now familiar with the results of sections 1 and 2, may want to consider 
the following guidelines on how these results can be explored and discovered in the 
classroom. 
 
1. Begin with the story of young Gauss, his method and lead to condition (1).  Help 
students to identify sequences which satisfy (1).  Then ask what mathematical 
question (that is, identify ALL sequences) naturally follows.  Discuss different ways 
of asking the same question – this will probably lead on to the converse question of 
Problem 1.  At this point, a necessary digression may be in the form of explaining 
the logical statement and its converse, inverse and contrapositive.  Teachers may 
wish to refer to mathematical dictionaries such as Nichols and Schwartz (1995) for 
these and other definitions. 
 
2. Have the students discuss, either in class or as homework, approaches to solving 
Problem 1.  Hints may be given and in our particular approach, the heuristic of 
‘solving the particular by using the general’ may be suggested.  If Problem 1 were 
solved as is, the teacher may encourage the students to seek a generalization of the 
result to obtain Theorem 1. 
 
3. Introduce the discrete-continuous dichotomy seen very often in mathematics, 
such as in summation and integration, and discrete and continuous random 
variables.  Lead on to the continuous version of the problem, Problem 2.  At this 
point, more help may be needed and teachers can give the essentials of linear 
algebra as a lecture or a reading task.  The proof of Theorem 4 is rather long and it 
is unlikely that many students except the best will be able to come up with it on 
their own.  Instead, encourage exploration to obtain different functions that fulfill 
condition (3) and seek to generalise them.  The final proof can be in a guided form 
such as the Cloze passage suggested by Tay (2001). 
 

Conclusion 
In this paper we explored the possible applications of an old but very useful method 
to a larger class of sequences. This exploration serves as a good example of how 
one can investigate a method or a result in mathematics by first posing a problem 
based on the existing method or theorem.  Here we applied the converse problem 
posing method, one of the most popularly used problem posing strategies.  The 
immediate benefit to the reader is a deeper understanding of Gauss’s method and its 
limitations. Using the result obtained here, teachers can produce problems of more 
variety related to Gauss’s methods for their students or adopt the approach here to 
propose mathematical projects.  Students may follow suit to explore other learned 
methods or theorems, thus make their learning more active and interesting.  
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Finally, the reader may wish to explore along the same lines with the Geometric 
Progression.  One may begin by trying the following problem: 
 

Problem 3: Suppose  is a sequence such that  S∞
=1}{ iia n = 

1
1

−
−

r
aan  for every n, 

where Sn is the sum to n terms and r is some constant real number.  Must  
be a Geometric Progression? 

∞
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